Skip to main content

Screen Space Multi-Colored Fog - Unity Shader


Screen Space Multi-Colored Fog

This is how the shader will end up looking :
screen space colored fog
screen space colored fog
This shader is completely an image effect hence the title - 'Screen Space'. This method allows a great deal of control on how the fog will be rendered. The main concept explored here is the use of the 'Depth Texture' which is basically the value of the distance of a pixel from the camera.
The concept of a 'Depth Texture' is also needed to implement effects like SSAO, Soft Particles, Translucency and many more.
Here is the colour ramp used :
color ramp for fog shader
colour ramp
So let's start by looking at the properties :
Properties
{
 _MainTex ("Texture", 2D) = "white" {}
 _ColorLookUp("Fog Colour Look Up", 2D) = "white"{}
 _FogSpread("Fog Spread", Float) = 10.0
}
As we except from an image effect shader there will always have a '_MainTex' input which the what the camera sees.
Additionally we have two more properties declared :
1) _ColorLookUp which is a texture that we provide.
2) _FogSpread which a float which is used to manipulate how the fog looks (will go into detail later)
Now we will go through how they were declared in CG PROGRAM.
/*1*/sampler2D _MainTex;
/*2*/sampler2D _CameraDepthTexture;
/*3*/sampler1D _ColorLookUp;
/*4*/half _FogSpread;
/*5*/#define IF(a, b, c) lerp(b, c, step((fixed) (a), 0));
  1. we declared _MainTex as sampler2D as usual
  2. declaring the use of the depth texture of the camera with _CameraDepthTexture ( Unity internal sampler )
  3. the colour look up texture that we will provide to provide colour to the fog, It is only 1D a  texture. An image that is 1 pixel in height and having width of 1 or more pixels is a 1D texture.
  4. declare _FogSpread as a half ( less precision than float but better for optimization )
  5. creating a macro called 'IF', This statement will be replaced with what is following it. Here 'IF' takes in 3 parameters :- a, b & c. Those parameters will be placed according to where those show up in the statement. The parameter 'a' will be replaced by whatever was passed to 'IF' as the first parameter and so on.
It's time for the juicy fragment shader that does all the heavy lifting :
fixed4 frag (v2f i) : SV_Target
{
 /*1*/fixed3 col = tex2D(_MainTex, i.uv);
 /*2*/float zsample = SAMPLE_DEPTH_TEXTURE(_CameraDepthTexture, i.uv);
 /*3*/float depth = Linear01Depth(zsample);
 /*4*/depth = clamp(depth * _FogSpread, 0, 1) * IF(depth < 1.0, 1, 0);
 /*5*/col *= tex1D(_ColorLookUp, depth);
 return fixed4(col,1.0);
}
Let's break it down :
  1. assigning the value of the _MainTex ( view from camera ) to a variable called 'col'.
  2. now we sample the depth information and assign that value to a float called 'zsample'
  3. we now normalize the depth value so that the depth info will be restricted between 0 and 1. Closer distance will have value of 0 and farther away things tend towards 1. This is platform dependent, so sometimes depth value will be inverse. You just have to subtract 1 with the normalized depth value if that is the case.
  4. here we multiply the depth value with our _FogSpread value. Larger _FogSpread values brings the end value of the fog colour much closer to the camera. So you can tweak this value to see what suits your scene. We are also checking if the depth value is less than 1.0 and if so the fog gets rendered as usual but if depth >= 1.0 then we return 0 so the entire depth value becomes 0, Thereby preventing the fog from being rendered. We have this in place to allow the skybox to be unaffected by the fog, If we remove this statement the skybox will be affected by the fog as well.
  5. we just multiply the depth colour with our original pixel colour from our camera.
Let's move on to making the C# file that goes along with this.
using UnityEngine;
[ExecuteInEditMode, ImageEffectAllowedInSceneView, RequireComponent(typeof(Camera))]
public class ScreenSpaceColouredFog: MonoBehaviour
{
    public Material mat;
    private void OnRenderImage(RenderTexture src, RenderTexture dest)
    {
        Graphics.Blit(src, dest, mat);
    }
}
That's it! Hope you learnt something. Support Bitshift Programmer by leaving a like on Bitshift Programmer Facebook Page and be updated as soon as there is a new blog post.
If you have any questions that you might have about shaders or unity development in general don't be shy and leave a message on my facebook page or down in the comments.
For the entire source code, go : HERE
For more Shader development tutorials, go : HERE
For Unity development tutorials, go : HERE

Comments

Assets Worth Checking Out

POPULAR POSTS

Curved Surface Shader [ Unity Implementation ]

Curved Surface Shader This is the shader that we will be having at the end of this tutorial.
 The curved surface shader is capable of achieving really varied visual effects from showing space-time curve due to gravity to a generic curved world shader that is seen in endless runners like Subway Surfers.
The concepts that you learn here can open you up to a new way of looking at shaders and if you didn't think they were the coolest thing ever already, hopefully let this be the turning point.😝.

Both the examples show above use the same exact material is just that different values have been passed to the shader.
Start by creating a new unlit shader in Unity and we will work our way from there.
First we define what the properties are:
_MainTex("Texture", 2D) = "white" {} _BendAmount("Bend Amount", Vector) = (1,1,1,1) _BendOrigin("Bend Origin", Vector) = (0,0,0,0) _BendFallOff("Bend Falloff", float) = 1.0 _BendFallOffStr("Falloff s…

Pixelation Shader - Unity Shader

Pixelation Shader This is the correct way (one of many) of showing pixelation as a post-processing effect. This effect will work in any aspect ratio without any pixel size scaling issues as well as it is very minimal in terms of coding it up.

In order to get this to work 2 components have to be set up:
1) The pixelation image effect
2) The script - which will be attached to the camera

So let's get started by creating a new image effect shader.
We will take a look at our Shaderlab properties :
_MainTex("Texture", 2D) = "white" {} That's it, Everything else will be private and not shown in the editor.
Now we will see what are defined along with the _MainTex but are private.
sampler2D _MainTex; int _PixelDensity; float2 _AspectRatioMultiplier; We will pass _PixelDensity & _AspectRatioMultiplier values from the script.
As this is an image effect there is no need to play around with the vertex shader.
Let's take a look at our fragment shader:
fixed4 frag (…

Toon Liquid Shader - Unity Shader

Toon Liquid Shader This is how the shader will end up looking :
This shader is pretty neat and somewhat easy to implement as well as to understand. Since we will be adding some basic physics to the toon water as it is moved about we will have to support that in the vertex shader as well.
So let's start by looking at the properties :
Properties { _Colour ("Colour", Color) = (1,1,1,1) _FillAmount ("Fill Amount", Range(-10,10)) = 0.0 [HideInInspector] _WobbleX ("WobbleX", Range(-1,1)) = 0.0 [HideInInspector] _WobbleZ ("WobbleZ", Range(-1,1)) = 0.0 _TopColor ("Top Color", Color) = (1,1,1,1) _FoamColor ("Foam Line Color", Color) = (1,1,1,1) _Rim ("Foam Line Width", Range(0,0.1)) = 0.0 _RimColor ("Rim Color", Color) = (1,1,1,1) _RimPower ("Rim Power", Range(0,10)) = 0.0 } Just the usual stuff that we are used to. The only thing that may stand out is the [HideInInspector] tag, This works j…

Alto's Adventure Style Procedural Surface Generation Part 1

Alto's Adventure Style - Procedural Surface Generation This game appears to be a strictly 2D game but if you have played it enough you will notice that some of the art assets used look like it's 3D ( I don't know if they are tho ). If you haven't played the game you are missing out on one the most visually pleasing and calming games out there ( There is literally a mode called Zen mode in the game ).
Anyway, I am going to show you how to make a procedural 2D world ( without the trees, buildings and background ) like in Alto's Adventure.
But you may notice I have a plane which is in in the Z-axis giving a depth to the surface which is not there in Alto's Adventure but if you want to know how to do it then that will be in part 2.
To achieve the same effect of Alto's Adventure ( I'm leaving that up to you ) only minimal changes are needed to the code that I am going to explain.
We are going to be using the plane mesh in unity for creating the 2D surface as th…

Gift Wrapping Convex Hull Algorithm With Unity Implementation

Convex Hull Algorithm Convex Hull algorithms are one of those algorithms that keep popping up from time to time in seemingly unrelated fields from big data to image processing to collision detection in physics engines, It seems to be all over the place. Why should you care? Cus you can do magic with it and it seems so simple to implement when you first hear about it, but when you start thinking about it, you will realize why it's not such a straightforward thing to do.
Now that I got you interested (hopefully) and now we will see just what a convex hull is.
As you may have noticed a perimeter was made with the same points that was given and these perimeter points enclose the entire set of points.
Now we have to clear up the term 'Convex'.
Convex means no part of the object is caved inwards or that none of the internal angles made by the points exceed 180 degrees.
In this example of a concave shape internal angles go beyond 180 degrees.
What are those red lines for? Well...…