Skip to main content

Advanced Billboard Shader + World-Space UI Support

Advanced Billboard Shader + World-Space UI Support

As you know billboarding is basically a plane with a texture on it that always facing the camera.

These are some examples of what we are going for.

This tutorial is going to be pretty straight-forward and easy to follow along you will learn how to make a billboard shader that not only keeps looking at the camera but also keeps its relative scaling intact.

We will also provide an option to keep it rendered on top of all the other objects in the scene. This will be most useful for world-space UI that needs to be rendered on top of other geometry.

We will be making 2 shaders here,

  1. Modified Default Unlit shader :- This one is a general shader ( easy to modify furthur ).
  2. Modified Default UI shader :- This one supports whatever a UI shader supports along with our billboarding capabilities.

 So let's get started with making the first one. As usual create a new Unlit shader and dive into the properties we need.

Properties
{
_MainTex ("Texture Image", 2D) = "white" {}
_Scaling("Scaling", Float) = 1.0
[Toggle] _KeepConstantScaling("Keep Constant Scaling", Int) = 1
[Enum(RenderOnTop, 0,RenderWithTest, 4)] _ZTest("Render on top", Int) = 1
}

Don't get distracted by those shader attributes ( [xyz] ). These are really useful little statements that help us format our materail editor interface. I will be adding another tutorial which goes through all of them in detail.

Now let's look at how these were defined in the CG PROGRAM.

uniform sampler2D _MainTex;
int _KeepConstantScaling;
float _Scaling;

You might have noticed that the _ZTest property doesn't show up here, That's because it goes in the sub-shader state value and while we are there we have to set some sub-shader tags as well.

SubShader
{
Tags{ "Queue" = "Transparent" "IgnoreProjector" = "True" "RenderType" = "Transparent" "DisableBatching" = "True" }
ZWrite On /*Write to the depth buffer*/
ZTest [_ZTest] /*Replaces _ZTest with either 0 for rendering on top and 4 for regular z-test*/
Blend SrcAlpha OneMinusSrcAlpha /*Set how semi-transparent and transparent objects blend their colour*/
Pass {
 .
 .
 .

*Note :

  • We have set 'Disable Batching' to True. This is because if an object is dynamically batched the vertex input that we get will be in world space and we will be writing the vertex shader with the assumption that the vertex data will be in local space.
  • This shader only works with 'Quad' primitive or any geometry which has vertices in the y-axis. So the default plane will not work.

Time for the Vertex Shader

v2f vert(appdata v)
{
   v2f o;
   /*1*/ float relativeScaler = (_KeepConstantScaling) ? distance(mul(unity_ObjectToWorld, v.vertex), _WorldSpaceCameraPos) : 1;
   /*2*/ float4 viewSpaceOrigin = mul( UNITY_MATRIX_MV, float4( 0.0, 0.0, 0.0, 1.0));
   /*3*/ float4 scaledVertexLocalPos = float4( v.vertex.x, v.vertex.y, 0.0, 0.0) * relativeScaler * _Scaling;
   /*4*/ o.vertex = mul( UNITY_MATRIX_P, viewSpaceOrigin + scaledVertexLocalPos);
   /*5*/ o.uv = v.uv;
}

We will go through each line in detail.

  1. If we have _KeepConstantScaling value as false then we don't apply any relative-scaling. Incase we do apply relative scaling then we convert the vertex position from local to world-space and get it's distance from the camera. We assign it to relativeScaler value.
  2. mul( UNITY_MATRIX_MV, float4( 0.0, 0.0, 0.0, 1.0)), We are transforming the origin in terms of the view co-ordinates and assign it to viewSpaceOrigin.
  3. The vertices gets scaled according to our 'relativeScaler' and '_Scaling' values and assign it to scaledVertexLocalPos.
  4. We then add the viewSpaceOrigin & scaledVertexLocalPos to get our view-space transformed vertex positions. Then we apply our perspective projection by mul( UNITY_MATRIX_P, viewSpaceOrigin + scaledVertexLocalPos)
  5. Assign our uv co-ordinates.

There are no modifications to the fragment shader.

To create a fully UI compatible shader we will use the 'Default-UI' shader that Unity provides us and make the same changes. You can get the Unity provided shaders HERE. Just select 'Built-in' shaders from the download drop-down for your desired Unity version.

The source code for both shaders can be found : HERE

That's it! Hope you learnt something. Support Bitshift Programmer by leaving a like on Bitshift Programmer Facebook Page and be updated as soon as there is a new blog post.
If you have any questions that you might have about shaders or Unity development in general don't be shy and leave a message on my facebook page or down in the comments.
For more Shader development tutorials, go : HERE
For Unity development tutorials, go : HERE

Comments

  1. Nice article, Which you have shared here about the advanced Billboard. Your article is very interesting and I liked your way to express your views in this article. If anyone interested to know more about the billboard advertising dubai, Visit rizqgroup

    ReplyDelete
  2. Knowledgeable article, really innovative information. If you are looking for LED Screen Manufacturer and supplier in Dubai then contact Universal Media House

    ReplyDelete

Post a Comment

Assets Worth Checking Out

POPULAR POSTS

Pixelation Shader - Unity Shader

Pixelation Shader This is the correct way (one of many) of showing pixelation as a post-processing effect. This effect will work in any aspect ratio without any pixel size scaling issues as well as it is very minimal in terms of coding it up.

In order to get this to work 2 components have to be set up:
1) The pixelation image effect
2) The script - which will be attached to the camera

So let's get started by creating a new image effect shader.
We will take a look at our Shaderlab properties :
_MainTex("Texture", 2D) = "white" {} That's it, Everything else will be private and not shown in the editor.
Now we will see what are defined along with the _MainTex but are private.
sampler2D _MainTex; int _PixelDensity; float2 _AspectRatioMultiplier; We will pass _PixelDensity & _AspectRatioMultiplier values from the script.
As this is an image effect there is no need to play around with the vertex shader.
Let's take a look at our fragment shader:
fixed4 frag (…

Toon Liquid Shader - Unity Shader

Toon Liquid Shader This is how the shader will end up looking :
This shader is pretty neat and somewhat easy to implement as well as to understand. Since we will be adding some basic physics to the toon water as it is moved about we will have to support that in the vertex shader as well.
So let's start by looking at the properties :
Properties { _Colour ("Colour", Color) = (1,1,1,1) _FillAmount ("Fill Amount", Range(-10,10)) = 0.0 [HideInInspector] _WobbleX ("WobbleX", Range(-1,1)) = 0.0 [HideInInspector] _WobbleZ ("WobbleZ", Range(-1,1)) = 0.0 _TopColor ("Top Color", Color) = (1,1,1,1) _FoamColor ("Foam Line Color", Color) = (1,1,1,1) _Rim ("Foam Line Width", Range(0,0.1)) = 0.0 _RimColor ("Rim Color", Color) = (1,1,1,1) _RimPower ("Rim Power", Range(0,10)) = 0.0 } Just the usual stuff that we are used to. The only thing that may stand out is the [HideInInspector] tag, This works j…

Curved Surface Shader [ Unity Implementation ]

Curved Surface Shader This is the shader that we will be having at the end of this tutorial.
 The curved surface shader is capable of achieving really varied visual effects from showing space-time curve due to gravity to a generic curved world shader that is seen in endless runners like Subway Surfers.
The concepts that you learn here can open you up to a new way of looking at shaders and if you didn't think they were the coolest thing ever already, hopefully let this be the turning point.😝.

Both the examples show above use the same exact material is just that different values have been passed to the shader.
Start by creating a new unlit shader in Unity and we will work our way from there.
First we define what the properties are:
_MainTex("Texture", 2D) = "white" {} _BendAmount("Bend Amount", Vector) = (1,1,1,1) _BendOrigin("Bend Origin", Vector) = (0,0,0,0) _BendFallOff("Bend Falloff", float) = 1.0 _BendFallOffStr("Falloff s…

Gift Wrapping Convex Hull Algorithm With Unity Implementation

Convex Hull Algorithm Convex Hull algorithms are one of those algorithms that keep popping up from time to time in seemingly unrelated fields from big data to image processing to collision detection in physics engines, It seems to be all over the place. Why should you care? Cus you can do magic with it and it seems so simple to implement when you first hear about it, but when you start thinking about it, you will realize why it's not such a straightforward thing to do.
Now that I got you interested (hopefully) and now we will see just what a convex hull is.
As you may have noticed a perimeter was made with the same points that was given and these perimeter points enclose the entire set of points.
Now we have to clear up the term 'Convex'.
Convex means no part of the object is caved inwards or that none of the internal angles made by the points exceed 180 degrees.
In this example of a concave shape internal angles go beyond 180 degrees.
What are those red lines for? Well...…

Alto's Adventure Style Procedural Surface Generation Part 1

Alto's Adventure Style - Procedural Surface Generation This game appears to be a strictly 2D game but if you have played it enough you will notice that some of the art assets used look like it's 3D ( I don't know if they are tho ). If you haven't played the game you are missing out on one the most visually pleasing and calming games out there ( There is literally a mode called Zen mode in the game ).
Anyway, I am going to show you how to make a procedural 2D world ( without the trees, buildings and background ) like in Alto's Adventure.
But you may notice I have a plane which is in in the Z-axis giving a depth to the surface which is not there in Alto's Adventure but if you want to know how to do it then that will be in part 2.
To achieve the same effect of Alto's Adventure ( I'm leaving that up to you ) only minimal changes are needed to the code that I am going to explain.
We are going to be using the plane mesh in unity for creating the 2D surface as th…