Skip to main content

What Are Fractals & How To Make Them In Unity [With Unity Package]


What Is A Fractal?

Fractals are non-regular geometric shapes that are self similar. Self-similar means that a smaller section of it resembles the larger whole.
These fractals can also be described as never ending patterns, as the smaller the scale we go the same patterns keep emerging.
These fractal  patterns are one of the few things that is easy to explain & to understand but very difficult to implement in such a way that the end result doesn't look like it was made by your 6 month old nephew.
An Example Of A Fractal
Some famous fractal are the Mandelbrot Set & the Sierpinski Triangle.
A lot of things in nature display fractal like properties.
An example of a fractal in nature

How To Make Them In Unity?

There are several approaches that we an take to make a Fractal, Here we will generate them recursively.
So each time a new object is created it creates it's own children which then generate their own children... so on and so forth.
This is what we will end up with:
making a fractal with recursive calls in unity
Recursively creating children to make fractal
We will look at the source code and then later break down reach part.
using UnityEngine;
using System.Collections;

public class Fractal : MonoBehaviour
{
    public Mesh mesh;
    public Material material;
    public int maxDepth;
    public float childScale;

    private int currentDepth;

    private void Start()
    {
        gameObject.AddComponent<MeshFilter>().mesh = mesh;
        gameObject.AddComponent<MeshRenderer>().material = material;
        if (currentDepth < maxDepth)
            StartCoroutine(AddChild());
    }

    private IEnumerator AddChild()
    {
        yield return new WaitForSeconds(0.5f);
        new GameObject("Child Up").AddComponent<Fractal>().
            Initialize(this, Vector3.up, Quaternion.identity);
        new GameObject("Child Right").AddComponent<Fractal>().
            Initialize(this, Vector3.right, Quaternion.Euler(0f, 0f, -90f));
        new GameObject("Child Left").AddComponent<Fractal>().
            Initialize(this, Vector3.left, Quaternion.Euler(0f, 0f, 90f));
    }

    private void Initialize(Fractal parent, Vector3 direction, Quaternion orientation)
    {
        mesh = parent.mesh;
        material = parent.material;
        maxDepth = parent.maxDepth;
        currentDepth = parent.currentDepth + 1;
        childScale = parent.childScale;
        transform.parent = parent.transform;
        transform.localScale = Vector3.one * childScale;
        transform.localPosition = direction * (0.5f + 0.5f * childScale);
        transform.localRotation = orientation;
    }
} 
Let's go through the first part:
public Mesh mesh;
public Material material;
public int maxDepth;
public float childScale;

private int currentDepth;

private void Start()
{
     gameObject.AddComponent<MeshFilter>().mesh = mesh;
     gameObject.AddComponent<MeshRenderer>().material = material;
     if (currentDepth < maxDepth)
          StartCoroutine(AddChild());
}
Each time an object is instantiated we call the start function and there we will provide what ever mesh and material is supposed to be assigned to the object. In our case we used the default unity Sphere mesh.
Also we have to prevent anymore object instantiation after a certain depth otherwise things can get out of hand.😜.
Now we will look at the 2nd Part:
private IEnumerator AddChild()
{
     yield return new WaitForSeconds(0.5f);
     new GameObject("Child Up").AddComponent<Fractal>().
     Initialize(this, Vector3.up, Quaternion.identity);
     new GameObject("Child Right").AddComponent<Fractal>().
     Initialize(this, Vector3.right, Quaternion.Euler(0f, 0f, -90f));
     new GameObject("Child Left").AddComponent<Fractal>().
     Initialize(this, Vector3.left, Quaternion.Euler(0f, 0f, 90f));
}
After the object has been instantiated, it's start function will call this Co-routine and create 3 new game objects one at each side of the parent, except for the bottom side.
Now for the juicy part:
private void Initialize(Fractal parent, Vector3 direction, Quaternion orientation)
{
     mesh = parent.mesh;
     material = parent.material;
     maxDepth = parent.maxDepth;
     currentDepth = parent.currentDepth + 1;
     childScale = parent.childScale;
     transform.parent = parent.transform;
     transform.localScale = Vector3.one * childScale;
     transform.localPosition = direction * (0.5f + 0.5f * childScale);
     transform.localRotation = orientation;
}
Every time a new fractal child is made, it's properties have to be set.
It takes the mesh and material of the parent as well as information as to what is the maximum depth of recursion.
We have to update what level of depth the current fractal child is at as well.
We then have to modify the shape of the child object, here we are just scaling it by the 'childScale' factor and we have to provide new location as well as new rotation to the child to make sure it is placed and oriented correctly in local space.
The rotation is important because if we didn't have proper rotation assigned then it's child will be having world space rotation and therefore always produce children according to world space and not local co-ordinates.
Support Bitshift Programmer by leaving a like on Bitshift Programmer Facebook Page and be updated as soon as there is a new blog post.
If you have any questions that you might have about shaders, C# or Unity development in general don't be shy and leave a message on my facebook page or down in the comments.
For more Unity development tutorials go HERE.
For more cool algorithm implementations go HERE.
For a more in depth look into making fractals go check out Catlike Coding, HERE.
For Unity Package go HERE.

Comments

Assets Worth Checking Out

POPULAR POSTS

How To Animate A Fish Swimming With Shaders

Animate Fish Swimming With Shaders We are going to make swimming animation by using only shader code.
By the time we are done, it's going to look like this.
You will probably need the fish model used in this tutorial, that can be found HERE. Can use your own model but the shader code might have to be modified accordingly because of the orientation of the model that you might be using ( issues with whether the X axis & Z axis is flipped ).
The shader used way out performs a similar scene with skeletal animations applied on the fish models.
On a previous benchmark I did comparing the shader animation with the skeletal animation there was a difference of 28 FPS( on average ) with 50 fish.
The shader we are going to make is really powerful and flexible and don't think that it's limited to making fishes swim😀.


So this mesh oriented like this when imported into unity and this is important to understand because this means that the model's vertices have to be moved along the X-…

Pixelation Shader - Unity Shader

Pixelation Shader This is the correct way (one of many) of showing pixelation as a post-processing effect. This effect will work in any aspect ratio without any pixel size scaling issues as well as it is very minimal in terms of coding it up.

In order to get this to work 2 components have to be set up:
1) The pixelation image effect
2) The script - which will be attached to the camera

So let's get started by creating a new image effect shader.
We will take a look at our Shaderlab properties :
_MainTex("Texture", 2D) = "white" {} That's it, Everything else will be private and not shown in the editor.
Now we will see what are defined along with the _MainTex but are private.
sampler2D _MainTex; int _PixelDensity; float2 _AspectRatioMultiplier; We will pass _PixelDensity & _AspectRatioMultiplier values from the script.
As this is an image effect there is no need to play around with the vertex shader.
Let's take a look at our fragment shader:
fixed4 frag (…

Curved Surface Shader [ Unity Implementation ]

Curved Surface Shader This is the shader that we will be having at the end of this tutorial.
 The curved surface shader is capable of achieving really varied visual effects from showing space-time curve due to gravity to a generic curved world shader that is seen in endless runners like Subway Surfers.
The concepts that you learn here can open you up to a new way of looking at shaders and if you didn't think they were the coolest thing ever already, hopefully let this be the turning point.😝.

Both the examples show above use the same exact material is just that different values have been passed to the shader.
Start by creating a new unlit shader in Unity and we will work our way from there.
First we define what the properties are:
_MainTex("Texture", 2D) = "white" {} _BendAmount("Bend Amount", Vector) = (1,1,1,1) _BendOrigin("Bend Origin", Vector) = (0,0,0,0) _BendFallOff("Bend Falloff", float) = 1.0 _BendFallOffStr("Falloff s…

Toon Liquid Shader - Unity Shader

Toon Liquid Shader This is how the shader will end up looking :
This shader is pretty neat and somewhat easy to implement as well as to understand. Since we will be adding some basic physics to the toon water as it is moved about we will have to support that in the vertex shader as well.
So let's start by looking at the properties :
Properties { _Colour ("Colour", Color) = (1,1,1,1) _FillAmount ("Fill Amount", Range(-10,10)) = 0.0 [HideInInspector] _WobbleX ("WobbleX", Range(-1,1)) = 0.0 [HideInInspector] _WobbleZ ("WobbleZ", Range(-1,1)) = 0.0 _TopColor ("Top Color", Color) = (1,1,1,1) _FoamColor ("Foam Line Color", Color) = (1,1,1,1) _Rim ("Foam Line Width", Range(0,0.1)) = 0.0 _RimColor ("Rim Color", Color) = (1,1,1,1) _RimPower ("Rim Power", Range(0,10)) = 0.0 } Just the usual stuff that we are used to. The only thing that may stand out is the [HideInInspector] tag, This works j…

Access Reflection Probe Data For Custom Shaders

The Unity shader documentation regarding reflection probes is pretty minimal and not at all comprehensive.
This short tutorial is intended to bring reflection probe functionalities to the forefront your future shader writing endevors which is a fancy way of saying "Look at this cool stuff and go and use it somewhere" 😏
Here we will try just the bare minimum of making a shader that reflects the cubemap data from reflection probe and displays it on the object.

These reflection probes are basically objects that store a complete image of the environment surrounding it into a cubemap which then can be read by shaders to create various effects.
More information on how reflection probes work in Unity can be found here :
Using Reflection Probes In Unity

I am not going over how to set up Reflection Probes here only how to access them inside our custom shaders.
So this is what we will be making:
The reflection probe takes in the cubemap only if it is within it's range otherwise i…