Skip to main content

Get Started With Compute Shaders

Getting Started With Compute Shaders

The shader that's a 'Jack of all trades'. Of course, it's the Compute Shader.
These beauties allow your general purpose parallelized code to run on the GPU.
These can be used to do some pretty cool stuff that would be pretty difficult to do otherwise even with multi-threaded CPU code.
When bringing up Compute shaders in the context of video games, It's mostly used in physics simulations and freaky looking particle effects and to a lower extent as a core part of some post-processing effects and render pipeline optimizations such as various culling operations like occlusion culling.

The most important thing about compute shaders is that it allows for more efficient communication from CPU to GPU side and vice-versa. That basically means you can send arbitrary data to the GPU, let it do some work and then read it's output and then do whatever you want with it.
You can now see that how different compute shaders are when compared to other shaders, such as the fragment shader; which will only give output from the GPU in the form of a pixel buffer.
This will be the start of a series of tutorials related to creating various effects & simulations with the help of Compute Shaders in Unity.

You should somewhat familiar with writing shaders as well as have basic C# and Unity knowledge.
Before we start on the good stuff we need to be able to run a basic compute shader and see it's output in Unity.
Keep in mind that you need a graphics card released after the year 2011 ( or Intel HD 4000 or later ) be able to run compute shaders.

Unity setup

  • Create a new scene
  • Create a new compute shader & name it 'Test.compute'
    // Each #kernel tells which function to compile; you can have many kernels
    #pragma kernel CSMain
    // Create a RenderTexture with enableRandomWrite flag and set it
    // with cs.SetTexture
    RWTexture2D Result;
    [numthreads(8,8,1)]
    void CSMain (uint3 id : SV_DispatchThreadID)
    {
    // TODO: insert actual code here!
       Result[id.xy] = float4(id.x & id.y, (id.x & 15)/15.0, (id.y & 15)/15.0, 0.0);
    }
    This is default Compute Shader template, We won't be changing this.
  • Create a C# script called 'ComputeTester.cs'
    using UnityEngine;
    
    public class ComputeTester : MonoBehaviour
    {
        public ComputeShader computeShader;
        public int textureRes = 256; // Size of render texture we will be making
    
        private Renderer rend;
        private RenderTexture renderTexture;
    
        private void Start()
        {
            renderTexture = new RenderTexture(textureRes, textureRes, 24) // We have 24 as parameter for depth so that we will have depth buffer & stencil buffer support
            {
                enableRandomWrite = true
            };
            renderTexture.Create();//Need to call this to actually make it available in graphics memory
    
            rend = GetComponent();
            rend.enabled = true;
    
            int kernelHandle = computeShader.FindKernel("CSMain"); //Find entry point to our Compute Shader
            computeShader.SetTexture(kernelHandle, "Result", renderTexture); //Assigning our render texture in our Compute Shader which is called 'Result'
            computeShader.Dispatch(kernelHandle, textureRes / 8, textureRes / 8, 1); // Executes code on GPU with the input we have provided.
            rend.material.SetTexture("_MainTex", renderTexture); //Telling out render's material to use the render texture as it's texture
        }
    
        private void OnDestroy()
        {
            renderTexture.Release(); // Remove the render texture from graphics memory
        }
    } 
    Attach this script to any gameObject with a renderer component. Don't forget to assign our compute shader in the editor.
  • We should end up with this.

    We didn't go into any depth here, Just go this up and running.
    In future tutorials we will explore this in greater detail.
That's it! Hope you learnt something. Support Bitshift Programmer by leaving a like on Bitshift Programmer Facebook Page and be updated as soon as there is a new blog post.
If you have any questions that you might have about shaders or unity development in general don't be shy and leave a message on my facebook page or down in the comments.
For more Shader development tutorials, go : HERE
For Unity development tutorials, go : HERE

Comments

Assets Worth Checking Out

POPULAR POSTS

Pixelation Shader - Unity Shader

Pixelation Shader This is the correct way (one of many) of showing pixelation as a post-processing effect. This effect will work in any aspect ratio without any pixel size scaling issues as well as it is very minimal in terms of coding it up.

In order to get this to work 2 components have to be set up:
1) The pixelation image effect
2) The script - which will be attached to the camera

So let's get started by creating a new image effect shader.
We will take a look at our Shaderlab properties :
_MainTex("Texture", 2D) = "white" {} That's it, Everything else will be private and not shown in the editor.
Now we will see what are defined along with the _MainTex but are private.
sampler2D _MainTex; int _PixelDensity; float2 _AspectRatioMultiplier; We will pass _PixelDensity & _AspectRatioMultiplier values from the script.
As this is an image effect there is no need to play around with the vertex shader.
Let's take a look at our fragment shader:
fixed4 frag (…

How To Animate A Fish Swimming With Shaders

Animate Fish Swimming With Shaders We are going to make swimming animation by using only shader code.
By the time we are done, it's going to look like this.
You will probably need the fish model used in this tutorial, that can be found HERE. Can use your own model but the shader code might have to be modified accordingly because of the orientation of the model that you might be using ( issues with whether the X axis & Z axis is flipped ).
The shader used way out performs a similar scene with skeletal animations applied on the fish models.
On a previous benchmark I did comparing the shader animation with the skeletal animation there was a difference of 28 FPS( on average ) with 50 fish.
The shader we are going to make is really powerful and flexible and don't think that it's limited to making fishes swim😀.


So this mesh oriented like this when imported into unity and this is important to understand because this means that the model's vertices have to be moved along the X-…

Toon Liquid Shader - Unity Shader

Toon Liquid Shader This is how the shader will end up looking :
This shader is pretty neat and somewhat easy to implement as well as to understand. Since we will be adding some basic physics to the toon water as it is moved about we will have to support that in the vertex shader as well.
So let's start by looking at the properties :
Properties { _Colour ("Colour", Color) = (1,1,1,1) _FillAmount ("Fill Amount", Range(-10,10)) = 0.0 [HideInInspector] _WobbleX ("WobbleX", Range(-1,1)) = 0.0 [HideInInspector] _WobbleZ ("WobbleZ", Range(-1,1)) = 0.0 _TopColor ("Top Color", Color) = (1,1,1,1) _FoamColor ("Foam Line Color", Color) = (1,1,1,1) _Rim ("Foam Line Width", Range(0,0.1)) = 0.0 _RimColor ("Rim Color", Color) = (1,1,1,1) _RimPower ("Rim Power", Range(0,10)) = 0.0 } Just the usual stuff that we are used to. The only thing that may stand out is the [HideInInspector] tag, This works j…

Curved Surface Shader [ Unity Implementation ]

Curved Surface Shader This is the shader that we will be having at the end of this tutorial.
 The curved surface shader is capable of achieving really varied visual effects from showing space-time curve due to gravity to a generic curved world shader that is seen in endless runners like Subway Surfers.
The concepts that you learn here can open you up to a new way of looking at shaders and if you didn't think they were the coolest thing ever already, hopefully let this be the turning point.😝.

Both the examples show above use the same exact material is just that different values have been passed to the shader.
Start by creating a new unlit shader in Unity and we will work our way from there.
First we define what the properties are:
_MainTex("Texture", 2D) = "white" {} _BendAmount("Bend Amount", Vector) = (1,1,1,1) _BendOrigin("Bend Origin", Vector) = (0,0,0,0) _BendFallOff("Bend Falloff", float) = 1.0 _BendFallOffStr("Falloff s…

Access Reflection Probe Data For Custom Shaders

The Unity shader documentation regarding reflection probes is pretty minimal and not at all comprehensive.
This short tutorial is intended to bring reflection probe functionalities to the forefront your future shader writing endevors which is a fancy way of saying "Look at this cool stuff and go and use it somewhere" 😏
Here we will try just the bare minimum of making a shader that reflects the cubemap data from reflection probe and displays it on the object.

These reflection probes are basically objects that store a complete image of the environment surrounding it into a cubemap which then can be read by shaders to create various effects.
More information on how reflection probes work in Unity can be found here :
Using Reflection Probes In Unity

I am not going over how to set up Reflection Probes here only how to access them inside our custom shaders.
So this is what we will be making:
The reflection probe takes in the cubemap only if it is within it's range otherwise i…