Skip to main content

C# Fundamentals - Operator Overloading

C# Fundamentals - Operator Overloading

Operator overloading is often times a really handy way of conveying a message as to how the code works.
You most of the built-in operators available in C# can be overloaded / re-defined. Thereby allowing a programmer to use operators with user-defined types as well. Overloaded operators are functions with the keyword operator followed by the symbol for the operator being defined.
Just like any other function, an overloaded operator has a return type and a parameter list.
There are operators than can be overloaded and those that can not.
Can be overloaded : All Unary, All Binary (that take one operand), All Comparison operators.
Can not be overloaded : All Conditional - Logical Operators, All Assignment Operators as well as : ?:, new, sizeof, .(dot) & typeof.

Let us take the example of a Position class, it consists of 3 float variables.
We will first go over overloading the '+' operator to add two positions.
public class Position
{
    public float x,y,z;
    public Position(float x=0, float y=0, float z=0)
    {
         this.x = x;
         this.y = y;
         this.z = z;
    }
    public static Position operator+ (Position A, Position B)
    {
         Position C = new Position();
         C.x = A.x + B.x;
         C.y = A.y + B.y;
         C.z = A.z + B.z;
         return C;
    }
}
    
public class Program
{
   public static void Main(string[] args)
   {
        Position p1 = new Position(10,20,30);
        Position p2 = new Position(20,10,30);
        Position p3 = p1 + p2;
        Console.WriteLine("Position is " + p3.x + ", " + p3.y + ", " + p3.z);
   }
}
Position is 30, 30, 60
Now we will see how to overload comparison operators '>','<' , '==' and '!='
public class Position
{
    public float x,y,z;
    public Position(float x=0, float y=0, float z=0)
    {
         this.x = x;
         this.y = y;
         this.z = z;
    }
    public static bool operator== (Position lhs, Position rhs)
    {
         return (lhs.x == rhs.x && lhs.y == rhs.y && lhs.z == rhs.z);
    }
    public static bool operator!= (Position lhs, Position rhs)
    {
         return (lhs.x != rhs.x || lhs.y != rhs.y || lhs.z != rhs.x);
    }
    public static bool operator> (Position lhs, Position rhs)
    {
         float lhsSum = lhs.x + lhs.y + lhs.z;
         float rhsSum = rhs.x + rhs.y + rhs.z;
         return (lhsSum > rhsSum);
    }
    public static bool operator< (Position lhs, Position rhs)
    {
         float lhsSum = lhs.x + lhs.y + lhs.z;
         float rhsSum = rhs.x + rhs.y + rhs.z;
         return (lhsSum < rhsSum);
    }
 }
    
 public class Program
 {
     public static void Main(string[] args)
     {
         Position p1 = new Position(20,10,30);
         Position p2 = new Position(20,20,30);
         Console.WriteLine("Is p1 greater than p2 " + (p1 > p2));
         Console.WriteLine("Is p1 less than p2 " + (p1 < p2));
         Console.WriteLine("Is p1 equal to p2 " + (p1 == p2));
     }
 }
Is p1 greater than p2 False
Is p1 less than p2 True
Is p1 equal to p2 False
Now you have a better understanding of how operator overloading works and why it's useful.
Support Bitshift Programmer by leaving a like on Bitshift Programmer Facebook Page and be updated as soon as there is a new blog post.
If you have any questions that you might have about shaders, C# or Unity development in general don't be shy and leave a message on my facebook page or down in the comments.
For more C# tutorials go HERE.

Comments

Assets Worth Checking Out

POPULAR POSTS

How To Animate A Fish Swimming With Shaders

Animate Fish Swimming With Shaders We are going to make swimming animation by using only shader code.
By the time we are done, it's going to look like this.
You will probably need the fish model used in this tutorial, that can be found HERE. Can use your own model but the shader code might have to be modified accordingly because of the orientation of the model that you might be using ( issues with whether the X axis & Z axis is flipped ).
The shader used way out performs a similar scene with skeletal animations applied on the fish models.
On a previous benchmark I did comparing the shader animation with the skeletal animation there was a difference of 28 FPS( on average ) with 50 fish.
The shader we are going to make is really powerful and flexible and don't think that it's limited to making fishes swim😀.


So this mesh oriented like this when imported into unity and this is important to understand because this means that the model's vertices have to be moved along the X-…

Pixelation Shader - Unity Shader

Pixelation Shader This is the correct way (one of many) of showing pixelation as a post-processing effect. This effect will work in any aspect ratio without any pixel size scaling issues as well as it is very minimal in terms of coding it up.

In order to get this to work 2 components have to be set up:
1) The pixelation image effect
2) The script - which will be attached to the camera

So let's get started by creating a new image effect shader.
We will take a look at our Shaderlab properties :
_MainTex("Texture", 2D) = "white" {} That's it, Everything else will be private and not shown in the editor.
Now we will see what are defined along with the _MainTex but are private.
sampler2D _MainTex; int _PixelDensity; float2 _AspectRatioMultiplier; We will pass _PixelDensity & _AspectRatioMultiplier values from the script.
As this is an image effect there is no need to play around with the vertex shader.
Let's take a look at our fragment shader:
fixed4 frag (…

Curved Surface Shader [ Unity Implementation ]

Curved Surface Shader This is the shader that we will be having at the end of this tutorial.
 The curved surface shader is capable of achieving really varied visual effects from showing space-time curve due to gravity to a generic curved world shader that is seen in endless runners like Subway Surfers.
The concepts that you learn here can open you up to a new way of looking at shaders and if you didn't think they were the coolest thing ever already, hopefully let this be the turning point.😝.

Both the examples show above use the same exact material is just that different values have been passed to the shader.
Start by creating a new unlit shader in Unity and we will work our way from there.
First we define what the properties are:
_MainTex("Texture", 2D) = "white" {} _BendAmount("Bend Amount", Vector) = (1,1,1,1) _BendOrigin("Bend Origin", Vector) = (0,0,0,0) _BendFallOff("Bend Falloff", float) = 1.0 _BendFallOffStr("Falloff s…

Toon Liquid Shader - Unity Shader

Toon Liquid Shader This is how the shader will end up looking :
This shader is pretty neat and somewhat easy to implement as well as to understand. Since we will be adding some basic physics to the toon water as it is moved about we will have to support that in the vertex shader as well.
So let's start by looking at the properties :
Properties { _Colour ("Colour", Color) = (1,1,1,1) _FillAmount ("Fill Amount", Range(-10,10)) = 0.0 [HideInInspector] _WobbleX ("WobbleX", Range(-1,1)) = 0.0 [HideInInspector] _WobbleZ ("WobbleZ", Range(-1,1)) = 0.0 _TopColor ("Top Color", Color) = (1,1,1,1) _FoamColor ("Foam Line Color", Color) = (1,1,1,1) _Rim ("Foam Line Width", Range(0,0.1)) = 0.0 _RimColor ("Rim Color", Color) = (1,1,1,1) _RimPower ("Rim Power", Range(0,10)) = 0.0 } Just the usual stuff that we are used to. The only thing that may stand out is the [HideInInspector] tag, This works j…

Access Reflection Probe Data For Custom Shaders

The Unity shader documentation regarding reflection probes is pretty minimal and not at all comprehensive.
This short tutorial is intended to bring reflection probe functionalities to the forefront your future shader writing endevors which is a fancy way of saying "Look at this cool stuff and go and use it somewhere" 😏
Here we will try just the bare minimum of making a shader that reflects the cubemap data from reflection probe and displays it on the object.

These reflection probes are basically objects that store a complete image of the environment surrounding it into a cubemap which then can be read by shaders to create various effects.
More information on how reflection probes work in Unity can be found here :
Using Reflection Probes In Unity

I am not going over how to set up Reflection Probes here only how to access them inside our custom shaders.
So this is what we will be making:
The reflection probe takes in the cubemap only if it is within it's range otherwise i…