Skip to main content

Advanced Skybox Shader For Unity

Advanced Skybox Shader

I'm going show you how to make a skybox shader in unity which gives you a large amount of control on how the skybox is going to look like including the colours shown above and below the horizon.

The default skybox that unity provides is decent when dealing with realistic game worlds, but for a stylized world, custom shaders have to be made.
This shader also has a sun just like with the default unity skybox and works with the directional light in the same exact way also a slider which goes from one set of skybox colour values to another is also included so stuff like day/night cycles can be made with ease.
The provided shader gives full control on how the skybox is going to look and is very much optimized.

This is the shader we will be making.

skybox shader example in unity
Ramen Run (Game In Development)
The Properties Of The Shader

We can see a lot of properties being used. The names make it pretty obvious what it's doing.
In this tutorial I am assuming that you have made a couple of shaders before in unity. If not, I urge you to watch a couple of tutorials on basic shaders and then come back. The entire section of code to do this is in the fragment shader and couple of shader flags and tags.
First we'll start off with defining those properties.
1:  Properties  
2:       {  
3:            _SkyColor1("Top Color Day", Color) = (0.37, 0.52, 0.73, 0)  
4:            _SkyColor2("Horizon Color Day", Color) = (0.89, 0.96, 1, 0)  
5:            _SkyColor3("Top Color Night", Color) = (0.2 ,0.4 ,0.6 , 0)  
6:            _SkyColor4("Horizon Color Night",Color) = (0.4, 0.2, 0.1, 0)  
7:            _Transition("Transition Value",Range(0.0 , 1.0)) = 0.5  
8:            _BaseLevel("Base Start Level",Range(-2.0 , 0.0)) = 0.0  
9:            _GradientExponent("Gradient Exponent",Range(1,100)) = 1  
10:           _SunColor("Sun Colour",Color) = (0.8,0.4,0.0)  
11:           _Scaling("Sun Scaling Factor",Range(1,350)) = 10  
12:           _SunRim("Sun Rim",Range(0.5,1.0)) = 0.8  
13:       }  
Then in the sub shader on top we specify these tags:
 Tags{ "RenderType" = "Opaque" "Queue" = "Background" }  
RenderType = Opaque means this object does not have any transparency on it.
Queue = Background means whatever object has this shader, it's order in the render queue is in the beginning, so that this object will be rendered before anything else is rendered.
This type of ordering is needed inorder to draw transparent things that will be drawn later by the GPU. This Queue is usually used by Skyboxes.
Some flags have to be set.
  ZWrite Off  
  Fog{ Mode Off }  
  Cull Off  
ZWrite off means don't use depth data to determine whether to display this fragment.
Fog { Mode off } means fragment colour not affected by fog.
Cull off means both faces will be drawn of that object.
Preparing the structs :- used to get input data from unity regarding the object the shader is on. This data can be positions, normals and texture coordinates.
  struct appdata  
       float4 position : POSITION;  
       float3 texcoord : TEXCOORD0;  
  struct v2f  
       float4 position : SV_POSITION;  
       float3 texcoord : TEXCOORD0;  
The declaration of properties in the CG Program.
  fixed3 _SkyColor1;  
  fixed3 _SkyColor2;  
  fixed3 _SkyColor3;  
  fixed3 _SkyColor4;  
  half _Transition;  
  half _BaseLevel;  
  int _GradientExponent;  
  fixed3 _SunColor;  
  int _Scaling;  
  half _SunRim;  
The vertex shader ( Nothing Special Happens Here )
  v2f vert(appdata v)  
      v2f o;  
      o.position = UnityObjectToClipPos(v.position);  
      o.texcoord = v.texcoord;  
      return o;  
The fragment shader ( The Meat Of The Shader )
  fixed4 frag(v2f i) : COLOR  
        half3 v = normalize(i.texcoord);  
        half p = pow(v.y + _BaseLevel, _GradientExponent);  
        fixed3 topCol = lerp(_SkyColor1, _SkyColor3, _Transition);  
        fixed3 bottomCol = lerp(_SkyColor2, _SkyColor4, _Transition);  
        half dotVal = dot(v,;  
        if (dotVal > _SunRim)  
          return lerp(fixed4(lerp(topCol, bottomCol, p), 1.0), fixed4(_SunColor,1.0), pow(dotVal, _Scaling));  
         return fixed4(lerp(topCol, bottomCol, p), 1.0);  
 half3 v = normalize(i.texcoord);  
now v contains 3 float values relating to the texture coordinates which have been normalized.
half p = pow(v.y + _BaseLevel, _GradientExponent);
determines the y axis value from which the transition should happen from topCol to bottomCol.
The larger the value of _GradientExponent the sharper the transition.
fixed3 topCol = lerp(_SkyColor1, _SkyColor3, _Transition);  
fixed3 bottomCol = lerp(_SkyColor2, _SkyColor4, _Transition);
topColour  and bottomColour are determined by the _Transition value.
_Transition value goes from 0.0 to +1.0 and the output will be _SkyColor3 if _Transition value is 1 for topCol and _SkyColor1 if _Transition value is 0.
half dotVal = dot(v,; gives the world coordinates of the directional light we have in the scene.
I lied, since this is a directional light we don't care about it's world coordinates, we actually get the direction in which the directional light is pointing.😆
Now the dot product is taken and gives a value from -1.0 to +1.0.If both the fragment's location ( offset from model projection origin acts as direction ) and direction of directional light is the same then we get a value of 1.0, If they are perpendicular we get 0.0 and if they are in exact opposite direction but parallel we get -1.0.
if (dotVal > _SunRim)  
  return lerp(fixed4(lerp(topCol, bottomCol, p), 1.0), fixed4(_SunColor,1.0), pow(dotVal, _Scaling));  
  return fixed4(lerp(topCol, bottomCol, p), 1.0);  
The _SunRim value sets a limitation to what radius the sun can extend to. Only if the dotVal is more then the sun is drawn.
fixed4(lerp(topCol, bottomCol, p), 1.0)
The output colour is lerped between the topCol and bottomCol 
with the help of the p value( In case you forgot ).
half p = pow(v.y + _BaseLevel, _GradientExponent);
p is a value holding the point from which horizon should be there, multiplied with a value that determines how smooth or sharp that transition in the horizon is.
You can get the entire code HERE.
If you like programming shaders make sure you check these out : Shader Tutorials
Support Bitshift Programmer by leaving a like on Bitshift Programmer Facebook Page and be updated as soon as there is a new blog post.
If you have any questions that you might have about shaders or unity development in general don't be shy and leave a message on my facebook page or down in the comments. 


Assets Worth Checking Out


Curved Surface Shader [ Unity Implementation ]

Curved Surface Shader This is the shader that we will be having at the end of this tutorial.
 The curved surface shader is capable of achieving really varied visual effects from showing space-time curve due to gravity to a generic curved world shader that is seen in endless runners like Subway Surfers.
The concepts that you learn here can open you up to a new way of looking at shaders and if you didn't think they were the coolest thing ever already, hopefully let this be the turning point.😝.

Both the examples show above use the same exact material is just that different values have been passed to the shader.
Start by creating a new unlit shader in Unity and we will work our way from there.
First we define what the properties are:
_MainTex("Texture", 2D) = "white" {} _BendAmount("Bend Amount", Vector) = (1,1,1,1) _BendOrigin("Bend Origin", Vector) = (0,0,0,0) _BendFallOff("Bend Falloff", float) = 1.0 _BendFallOffStr("Falloff s…

Introduction To Replacement Shaders & Shader Keywords

What is a replacement shader? A replacement shader is a shader that gets applied to every object being rendered.
Since the camera determines what objects end up being shown on screen, The functionality for setting up replacement shaders are in the camera class as well.

A good use case of a replacement shader would be in making effects like SSAO.
Here we need access to the normals and the depth information so a replacement shader that displays only the normals can be rendered ( stored in a render texture ) and then another shader that displays the depth information ( stored in a render texture ) and then the final image is rendered with the SSAO effect by taking the two render textures as input and doing a bunch of calculations.

Another use case would be to visualize the environment differently for various reasons like how they did in City Skylines.

The function that performs shader replacement is:
Camera.SetReplacementShader( Shader shader, string replacementTag ) Takes in a shader as …

Toon Liquid Shader - Unity Shader

Toon Liquid Shader This is how the shader will end up looking :
This shader is pretty neat and somewhat easy to implement as well as to understand. Since we will be adding some basic physics to the toon water as it is moved about we will have to support that in the vertex shader as well.
So let's start by looking at the properties :
Properties { _Colour ("Colour", Color) = (1,1,1,1) _FillAmount ("Fill Amount", Range(-10,10)) = 0.0 [HideInInspector] _WobbleX ("WobbleX", Range(-1,1)) = 0.0 [HideInInspector] _WobbleZ ("WobbleZ", Range(-1,1)) = 0.0 _TopColor ("Top Color", Color) = (1,1,1,1) _FoamColor ("Foam Line Color", Color) = (1,1,1,1) _Rim ("Foam Line Width", Range(0,0.1)) = 0.0 _RimColor ("Rim Color", Color) = (1,1,1,1) _RimPower ("Rim Power", Range(0,10)) = 0.0 } Just the usual stuff that we are used to. The only thing that may stand out is the [HideInInspector] tag, This works j…

Access Reflection Probe Data For Custom Shaders

The Unity shader documentation regarding reflection probes is pretty minimal and not at all comprehensive.
This short tutorial is intended to bring reflection probe functionalities to the forefront your future shader writing endevors which is a fancy way of saying "Look at this cool stuff and go and use it somewhere" 😏
Here we will try just the bare minimum of making a shader that reflects the cubemap data from reflection probe and displays it on the object.

These reflection probes are basically objects that store a complete image of the environment surrounding it into a cubemap which then can be read by shaders to create various effects.
More information on how reflection probes work in Unity can be found here :
Using Reflection Probes In Unity

I am not going over how to set up Reflection Probes here only how to access them inside our custom shaders.
So this is what we will be making:
The reflection probe takes in the cubemap only if it is within it's range otherwise i…

How To Animate A Fish Swimming With Shaders

Animate Fish Swimming With Shaders We are going to make swimming animation by using only shader code.
By the time we are done, it's going to look like this.
You will probably need the fish model used in this tutorial, that can be found HERE. Can use your own model but the shader code might have to be modified accordingly because of the orientation of the model that you might be using ( issues with whether the X axis & Z axis is flipped ).
The shader used way out performs a similar scene with skeletal animations applied on the fish models.
On a previous benchmark I did comparing the shader animation with the skeletal animation there was a difference of 28 FPS( on average ) with 50 fish.
The shader we are going to make is really powerful and flexible and don't think that it's limited to making fishes swim😀.

So this mesh oriented like this when imported into unity and this is important to understand because this means that the model's vertices have to be moved along the X-…